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selecting and testing different features, this study was able to narrow down the best 3 (0,1,6)
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The feature polarity 1s either a positive or negative state, relative to the original waveform. We can flip the o 200 -

Problem Statement polarity and since it 1s controllable, 1t 1s not relevant as a predictor as we can observe in the graph above. , ' | ' , , , ]
So, the remaining relevant features are 'theo tt', 'stla', 'stlo', 'stel', 'evla’, 'evlo', 'evdp.” We passed these k. i
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features to a forward selection algorithm and all these features were deemed relevant to predict ‘obs_ftt.’
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As seismic waves travels through earth’s layers, their travel path changes depending

time before reaching the surface difficult. Machine Leamlng Models 6000 1
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Solving this problem will provide valuable information for understanding the Earth’s What are we trying to beat? 5000 1

structure, tectonic plate movements, and earthquake mechanisms. This knowledge can , , o
help us get a deeper understanding of Earth’s geology. This in turn can be crucial to After finding out our best subset, the next step was  We are trying to beat 10.9022 secinds which 1s the

the development of new technologies to reduce the effects of earthquakes. In sum, an to find the best model. To do that, we split the data mean squared error between theo tt and obs_tt.
accurate prediction of seismic waves can save lives, reduce property damage, improve in three (50%, 25%, 25%). 50% of the data is used The error in prediction is the time shift (tshift).
building design, allocate resources effectively, and advance scientific research. for training, 25% for testing and the remaining 25  The distribution of the error can be seen in Data 1000 -
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unseen data.
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The 1nitial columns

lasso_model = linear model.Lasso(alpha=0.001, max iter=100, tol=0.0001)

lasso_score = cross_val score(lasso _model, dataset.drop('obs tt', axis=1), Neural Network

Neural Network

dataset['obs tt'], cv = 3, scoring = 'neg mean squared error')

Count

Predictions [seconds]

-3.808205 -3.559288 -3.575564 -3.647686 O0.113699 <

Conclusion

e p— 1 757664 1621635 1682072 0.056558

n St

1O T e a7ises A o1m1s o amsons o aesaca o 1re1ay The Exploratory Data Analysis helped us select the best features for this task. These
T O e features are 'theo tt', 'stla’, 'stlo', 'stel', 'evla', 'evlo', 'evdp.’

e _estmators: 2128162 = 89s7ed 2158829 = 22e828 ©:120629 Then, we tested different machine learning models to predict waves travel times and our

best machine learning algorithm 1s the Gradient Boosting with a mean squared error of 1.56
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