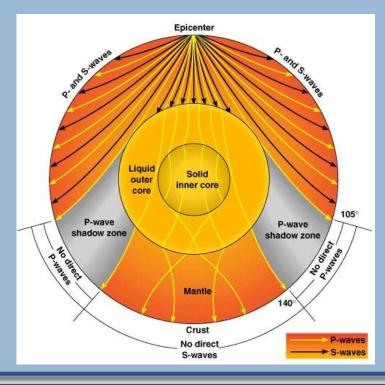
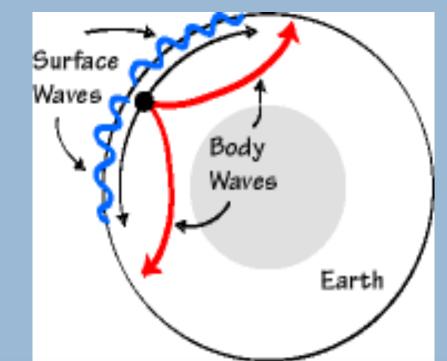
UNIVERSITY of HOUSTON

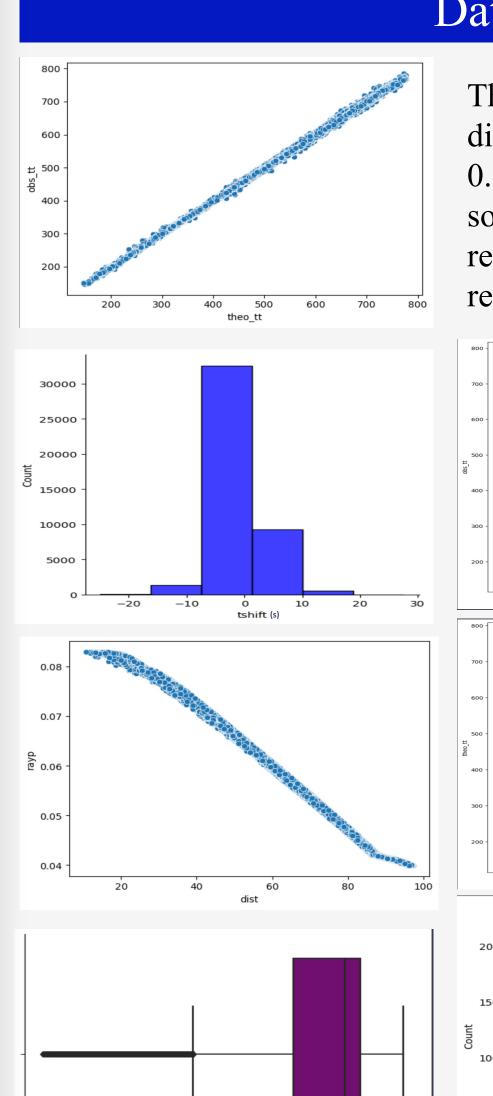
Project Crystal Ball Earth: Earthquake Travel-Time Prediction

Sam Houston State University


Abstract

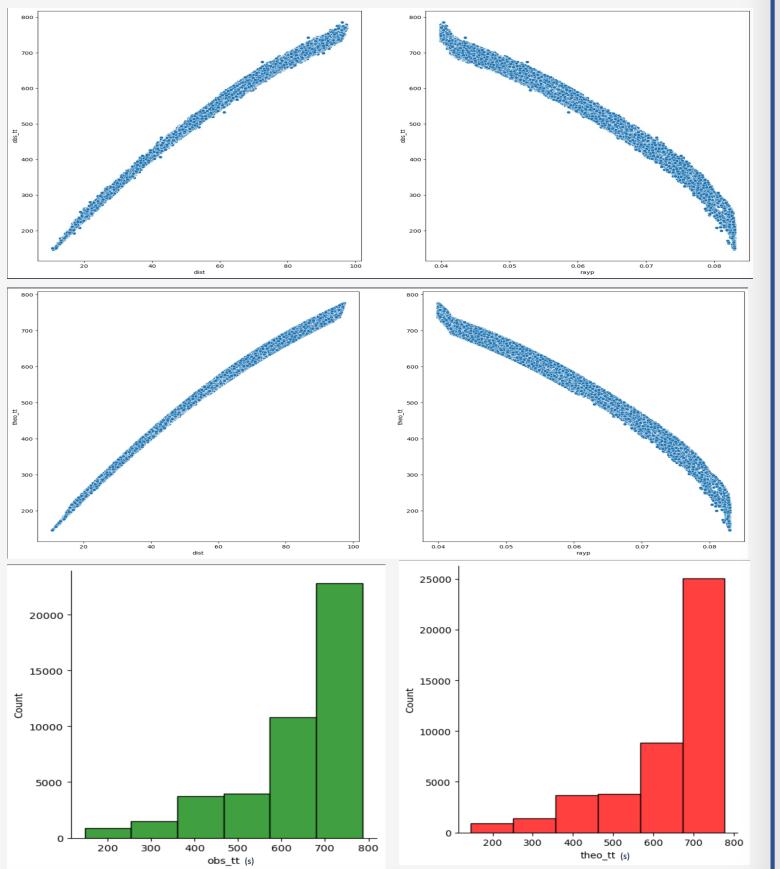

Predicting the travel time of seismic waves from an earthquake to a receiv challenging due to the labyrinthine path of waves through the Earth's layers. complexity is evident in the limitations of our current formulas and models selecting and testing different features, this study was able to narrow down the predictors to build and train different models. We then proceeded by tuning our h parameters to find the best bias-variance trade off for all the models. Overall, the models were able to outperform the current formula in predicting the real travel of seismic waves. This highlights the need for refined machine-learning tools the improve seismic waves prediction.

Problem Statement


As seismic waves travels through earth's layers, their travel path changes depending on each layer they go trough as you can see below, this makes predicting their travel time before reaching the surface difficult.

Solving this problem will provide valuable information for understanding the Earth's structure, tectonic plate movements, and earthquake mechanisms. This knowledge can help us get a deeper understanding of Earth's geology. This in turn can be crucial to the development of new technologies to reduce the effects of earthquakes. In sum, an accurate prediction of seismic waves can save lives, reduce property damage, improve building design, allocate resources effectively, and advance scientific research.

The initial columns are Filename, theo tt, tshift, obs tt, polarity, stnm,rayp, stla, stel, evla, evlo, evdp, dist, az, baz. Obs tt is the target variable.

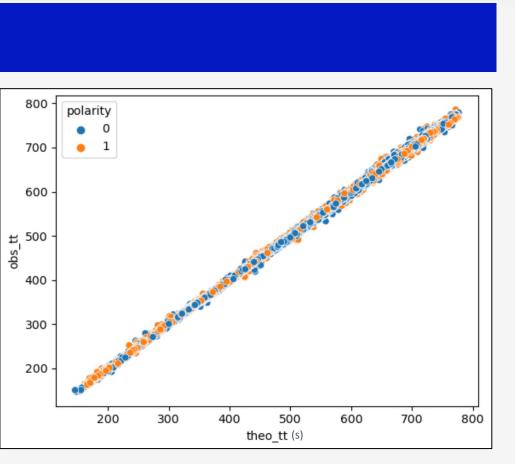


400 500

600

Data Visualization

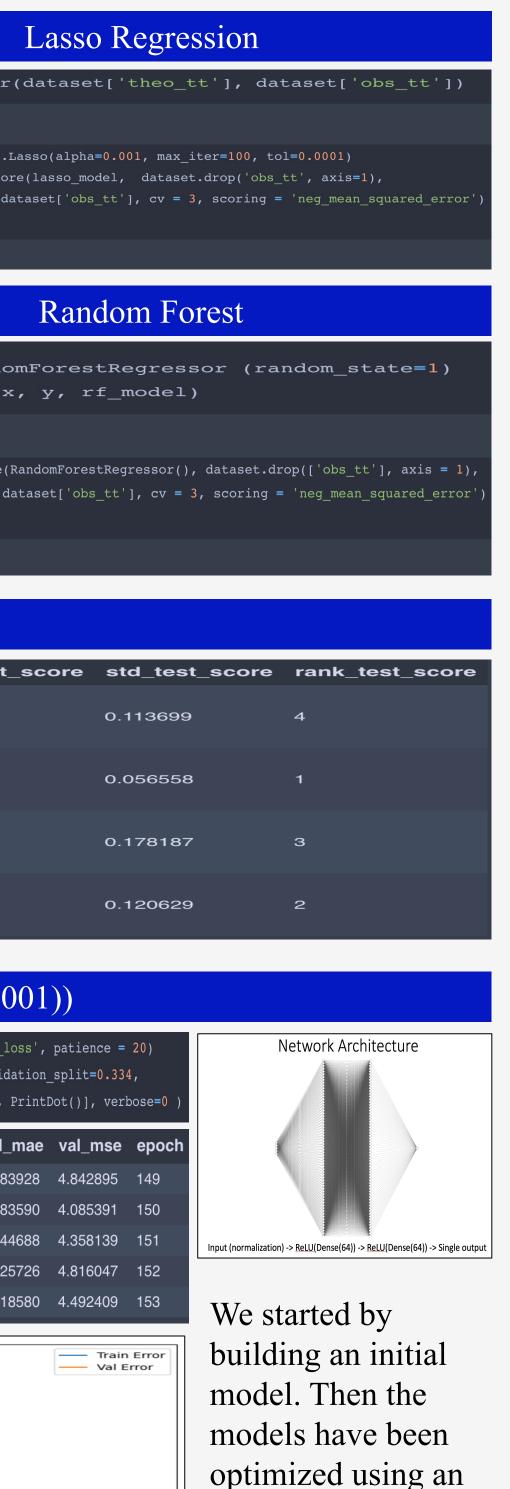
The correlation between dist and rayp, theo_tt and dist, obs_tt and dist are respectively -0.997, 0.9925, 0.992500. Those are correlated among themselves, so some of them must be dropped. theo tt is the most relevant with a correlation of 0.9997 and has a linear relation wih obs tt.



Mahamadou Dagnoko¹, Cassandra De Leon¹, Muhammad Rehan¹, Michelle Wheatley², Christopher Donan³ ¹University of Houston Main; ²University of Houston Clear Lake; ³Sam Houston State University

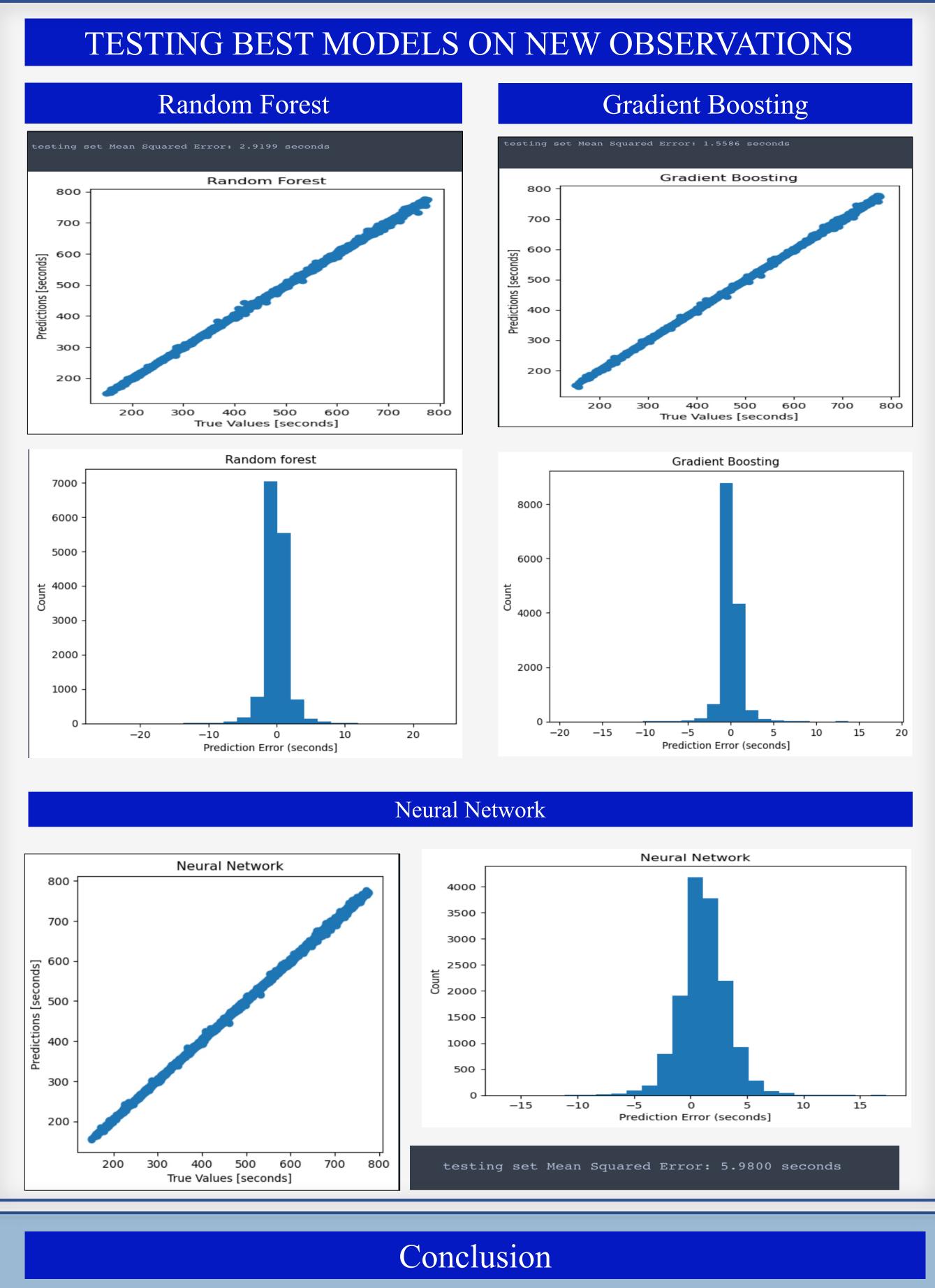
ver is
This
s. By
e best
nyper-
e best
l time
at can

				Selec	ted	eati	ires
feature_idx	cv_scores	avg_score		feature_names	ci_bound	l std_dev	std_err
1 (0,)	[-10.669564464818311]		(theo_tt,)		NaN	0.0	NaN
2 (0, 6)	[-10.396257167400291]		(theo_tt, evdp)		NaN	0.0	NaN
3 (0, 1, 6)	[-10.2319281560013]	-10.231928	(theo_tt, stla, evdp)		NaN	0.0	NaN
4 (0, 1, 5, 6)	[-10.19400930133311]		(theo_tt, stla, evlo, e		NaN	0.0	NaN
5 (0, 1, 3, 5, 6) 6 (0, 1, 2, 4, 5, 6)	[-10.158479634380443]		(theo_tt, stla, stel, e		NaN	0.0	NaN
 6 (0, 1, 3, 4, 5, 6) 7 (0, 1, 2, 3, 4, 5, 6) 	[-10.131353793823584]) [-10.117085585950939]		(theo_tt, stla, stel, e (theo_tt, stla, stlo, st		NaN NaN	0.0 0.0	NaN NaN
1 (0, 1, 2, 0, 1 , 0, 0)	[-10.1170000000000000000	-10.117000		ici, evia, evio, evio <i>,</i>	Πάιν	0.0	ΙΝαΙΝ
			Ma	chine I	Lear	ning	Mo
	Pı	rocedu	re				
in three (5 for trainin % is used	e best model. 50%, 25%, 23 ng, 25% for t as new obse ta.	5%). 5 testing	0% of the and the re	data is u emaining	sed 25	mean The e The c Visua	error listril
in three (5 for trainin % is used unseen dat	50%, 25%, 23 ng, 25% for t as new obset ta. <u>Linear</u>	5%). 5 testing rvation r Regre	0% of the and the re n to test ou ession	data is u emaining ar models	sed 25 on	The e The c Visua	error listrik lizati
in three (5 for trainin % is used unseen dat	50%, 25%, 23 ng, 25% for t as new obset ta. <u>Linear</u>	5%). 5 testing rvation r Regre	0% of the and the re to test ou ession	data is u emaining ar models	sed 25 on	The c The c Visua	error listril lizati uared_ ⁷⁰¹⁸⁹³⁷⁹
in three (5 for trainin % is used unseen dat	50%, 25%, 23 ng, 25% for t as new obset ta. <u>Linear</u>	5%). 5 testing rvation r Regre	0% of the and the re n to test ou ession	data is u emaining ar models	sed 25 on	The e The c Visua	error listril lizati uared_ 70189379 = linea = cross
<pre>in three (5 for trainin % is used unseen dat lm_score = cross_v np.mean(lm_score)</pre>	50%, 25%, 2: ng, 25% for t as new obse ta. <u>Linear</u> val_score(LinearRegres dataset['obs_	5%). 5 testing rvation r Regre	0% of the and the re to test out ession taset.drop('obs_tt 3, scoring = 'neg	data is u emaining ar models	sed 25 on	The c The c Visua	error listrik lizati uared_ 70189379 = linea = cross
<pre>in three (5 for trainin % is used unseen dat lm_score = cross_v np.mean(lm_score) -10.120434378630415</pre>	50%, 25%, 2: ng, 25% for t as new obse ta. val_score(LinearRegres dataset['obs_ Dec	5%). 5 testing rvation r Regreession(), dat _tt'], cv =	0% of the and the re to test out ession taset.drop('obs_tt 3, scoring = 'neg	data is u emaining ar models	sed 25 on	The e The c The c Visua	error listril lizati uared_ 70189379 = linea = cross
<pre>in three (5 for trainin % is used unseen dat lm_score = cross_v np.mean(lm_score) -10.120434378630415</pre>	50%, 25%, 2: ng, 25% for to as new obsection ta. <u>Linear</u> val_score(LinearRegres dataset['obs_ Dec cop('obs_tt', axis	5%). 5 testing rvation r Regreession(), dat _tt'], cv =	0% of the and the re to test out ession taset.drop('obs_tt 3, scoring = 'neg	data is u emaining ur models t', axis=1), g_mean_squared_e stel 0.00	sed 25 0n	The e The c The c Visua	error listrik lizati uared_ vol89379 = linea = cross sso_score
<pre>in three (5 for trainin % is used unseen dat lm_score = cross_v np.mean(lm_score) -10.120434378630415 x = dataset.dr y = dataset['o</pre>	50%, 25%, 2: ng, 25% for to as new obsection ta. <u>Linear</u> val_score(LinearRegres dataset['obs_ Dec cop('obs_tt', axis	5%). 5 testing rvation r Regreession(), dat _tt'], cv =	0% of the and the re n to test ou ession taset.drop('obs_tt 3, scoring = 'neg	data is u emaining ur models t', axis=1), g_mean_squared_e stel 0.00 stla 0.00	sed 25 on	The e The c The c Visua	error listrik lizati uared 70189379 = linea = cross sso_score 0102094
<pre>in three (5 for trainin % is used unseen dat lm_score = cross_v np.mean(lm_score) -10.120434378630415 x = dataset.dr y = dataset['o tree_model = D</pre>	50%, 25%, 2: ng, 25% for to as new obsection ta. <u>Linear</u> val_score(LinearRegres dataset['obs_ <u>Dec</u> cop('obs_tt', axis obs_tt']	5%). 5 testing rvation r Regree ssion(), dat _tt'], cv =	0% of the and the re n to test ou ession taset.drop('obs_tt 3, scoring = 'neg	data is u emaining ar models t', axis=1), g_mean_squared_e stel 0.00 stla 0.00 stla 0.00	sed 25 01 25 01 20 20 20 20 20 20 20 20 20 20 20 20 20	The e The c The c Visua	el = evalue conscore
<pre>in three (5 for trainin % is used unseen dat lm_score = cross_v np.mean(lm_score) -10.120434378630415 x = dataset.dr y = dataset['o tree_model = D</pre>	50%, 25%, 23 ng, 25% for to as new obsections ta. Linear val_score(LinearRegress dataset['obs_ Deco cop('obs_tt', axis obs_tt'] DecisionTreeRegres	5%). 5 testing rvation r Regree ssion(), dat _tt'], cv =	0% of the and the re n to test ou ession taset.drop('obs_tt 3, scoring = 'neg	data is u emaining ur models t', axis=1), g_mean_squared_e stel 0.00 stla 0.00 evla 0.00 evla 0.00	sed 25 01 error') error') 00028 00048 00073 00106 00112	The e The c The c Visua	el = evalu cross_va
<pre>in three (5 for trainin % is used unseen dat lm_score = cross_v np.mean(lm_score) -10.120434378630415 x = dataset.dr y = dataset['o tree_model = D</pre>	50%, 25%, 2: ng, 25% for the as new obsection of the section of	5%). 5 testing rvation r Regree ssion(), dat _tt'], cv =	0% of the and the re n to test ou ession taset.drop('obs_tt 3, scoring = 'neg	data is u emaining ur models t', axis=1), g_mean_squared_e stel 0.00 stla 0.00 evla 0.00 evla 0.00	sed 25 011 error') 00028 00048 00073 00106 00112 00214	The e The c The c Visua "mean_sq 10.90217 lasso_model lasso_score np.mean(las _10.120435359 rf_model_ 3.31257 rf_score =	error listrik lizati uared 70189379 = linea = cross sso_score 0102094
<pre>in three (5 for trainin % is used unseen dat lm_score = cross_v np.mean(lm_score) -10.120434378630415 x = dataset.dr y = dataset['o tree_model = D model_evaluate</pre>	50%, 25%, 2: ng, 25% for the as new obsection of the section of	5%). 5 testing rvation r Regree ssion(), dat _tt'], cv =	0% of the and the re n to test ou ession taset.drop('obs_tt 3, scoring = 'neg	data is u emaining ar models t', axis=1), g_mean_squared_e stel 0.00 stla 0.00 evla 0.00 evla 0.00 evla 0.00 itheo_tt 0.99	sed 25 011 error') 00028 00048 00073 00106 00112 00214 00214	The e The c The c Visua	el = evalu (102094 e= cross (20189379 = linea e = cross (350_score (2012094 e= evalu (2682114 (cross_va _score) (262948
<pre>in three (5 for trainin % is used unseen dat lm_score = cross_v np.mean(lm_score) -10.120434378630415 x = dataset.dr y = dataset['o tree_model = D model_evaluate</pre>	50%, 25%, 2: ng, 25% for the as new observation of the second se	5%). 5 testing rvation r Regree ssion(), dat _tt'], cv = cision 7 ; = 1) sor (rand .)	0% of the and the re n to test ou ession taset.drop('obs_tt 3, scoring = 'neg	data is u emaining ar models t', axis=1), g_mean_squared_e stel 0.00 stla 0.00 evla 0.00 evla 0.00 evla 0.00 itheo_tt 0.99	sed 25 011 error') 00028 00048 00073 00106 00112 00214 00214	The e The c The c Visua wean_sq 10.90217 lasso_model lasso_score np.mean(las _10.120435359 rf_model_ 3.31257 rf_score = np.mean(rf_	el = evalu (102094 e= cross (20189379 = linea e = cross (20189379 (20189379 (20189379 (20189379 (20189379 (20189379 (20189379 (20189379 (20189379 (20189379 (20189379 (20189379 (20189379 (2018) (2018
<pre>in three (5 for trainin % is used unseen dat lm_score = cross_v np.mean(lm_score) -10.120434378630415 x = dataset.dr y = dataset['o tree_model = D model_evaluate 6.043171377191967 </pre>	50%, 25%, 2: ng, 25% for the as new obset the as new obs	5%). 5 testing rvation r Regree ssion(), dat _tt'], cv = cision 7 ; = 1) sor (rand .)	0% of the and the re n to test ou ession taset.drop('obs_tt 3, scoring = 'neg	data is u emaining ar models t', axis=1), g_mean_squared_e stla 0.00 evla 0.00 evla 0.00 evla 0.00 itheo_tt 0.99	sed 25 011 error') 00028 00048 00073 00106 00112 00214 000112 00214 000112 00214 000112	The e The c The c Visua	el = evalu (vared 70189379 = linea = cross sso_score 0102094 (cross_va _score) 262948
<pre>in three (5 for trainin % is used unseen dat lm_score = cross_v np.mean(lm_score) -10.120434378630415 x = dataset.dr y = dataset['o tree_model = D model_evaluate 6.043171377191967 </pre>	50%, 25%, 2: ng, 25% for the as new observations ta. Linear val_score(LinearRegress dataset['obs_tt', axiss obs_tt'] DecisionTreeRegress e(x, y, tree_model as split0_test_solutions e(x, y, tree_model as split0_test_solutions be a split0_test	5%). 5 testing rvation r Regree ssion(), dat _tt'], cv = cision 7 ; = 1) sor (rand .)	0% of the and the re and the re to test out ession taset.drop('obs_tt 3, scoring = 'neg om_state=1) om_state=1)	data is u emaining ar models t', axis=1), g_mean_squared_e stel 0.00 stla 0.00 evla 0.00 evla 0.00 istlo 0.00 evlo 0.00 evdp 0.00 theo_tt 0.99	sed 25 011 error') 00028 00048 00073 00106 00112 00214 000112 00214 000112 00214 000112	The e The c The c Visua visua nean_sq 10.90217 lasso_model lasso_score np.mean(las -10.120435359 rf_model_ 3.31257 rf_score = np.mean(rf_ -3.0287380407	el = error listril lizati uared 70189379 = linea e = cross sso_score 9102094 el = evalu 7682114 cross_va _score) 262948
<pre>in three (5 for trainin % is used unseen dat m_score = cross_m np.mean(lm_score) -10.120434378630415 x = dataset.dr y = dataset['o tree_model = D model_evaluate 6.043171377191967 param {'learning_rate 'n_estimators' {'learning_rate 'n_estimators' } "n_estimators' </pre>	50%, 25%, 2: ng, 25% for t as new obset ta. Linear val_score(LinearRegres dataset['obs_ Cop('obs_tt', axis obs_tt'] DecisionTreeRegres e(x, y, tree_model as split0_test_ e(x, y, tree_model as split0_test_ =:: -3.808205 =:: -3.271593	5%). 5 testing rvation r Regrees ssion(), dat tt'], cv = cision 7 s = 1) sor (rand .)	0% of the and the re n to test ou ession taset.drop('obs_tt 3, scoring = 'neg om_state=1) om_state=1)	data is u emaining ir models t', axis=1), g_mean_squared_e stla 0.00 evla 0.00 evla 0.00 evlo 0.00 itheo_tt 0.99 Grad sto 1.62	sed 25 01 0 0 25 01 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	The e The c The c Visua visua nean_sq 10.90217 lasso_model lasso_score np.mean(las -10.120435359 rf_model_ 3.31257 rf_score = np.mean(rf_ -3.0287380407	errorlistrilizat:uared $uaredvoltagared$


	Neural Network (optimizer = Adam(0.											(0.0		
<pre>optimizer = optimizers.Adam(0.001) neural_model.compile(loss='mse', optimizer = optimizer, metrics= ['mae','mse']) history = neural_model.fit(x, y, epochs = 128, validation_split=0.334)</pre>								<pre>early_stop = callbacks.EarlyStopping(monitor= 'val_ history = neural_model.fit(x, y, epochs = 500, value callbacks = [early_stop]</pre>						
	loss	mae	mse	val_loss	val_mae	val_mse	epoch		loss	mae	mse	val_loss	val_	
123	4.327561	1.544589	4.327561	4.905277	1.613286	4.905277	123	149	3.906017	1.450457	3.906017	4.842895	1.683	
124	4.142728	1.498574	4.142728	3.643636	1.366613	3.643636	124	150	4.208082	1.519250	4.208082	4.085391	1.483	
125	4.102790	1.489783	4.102790	4.081650	1.468914	4.081650	125	151	4.047722	1.487720	4.047722	4.358139	1.544	
126	4.126263	1.493542	4.126263	4.399500	1.554043	4.399500	126	152	4.017493	1.478220	4.017493	4.816047	1.625	
127	3.967525	1.456938	3.967525	4.142158	1.477030	4.142158	127	153	4.017292	1.478578	4.017292	4.492409	1.518	
or [SMPG^2\$]	20.0 17.5 - 15.0 - 12.5 - 10.0 - 7.5 - 5.0 - 2.5 - 0.0 - 0	20	40 6		100	Train Val Ei	Asc.	or [SMPG^2\$]	20.0 17.5 - 15.0 - 12.5 - 10.0 - 7.5 - 5.0 - 2.5 - 0.0 0	20	40	60 Epoch	80	

e original waveform. We can flip the we can observe in the graph above. evla', 'evlo', 'evdp.' We passed these eemed relevant to predict 'obs tt.'

at are we trying to beat?


to beat 10.9022 seconds which is the error between theo tt and obs tt. prediction is the time shift (tshift). on of the error can be seen in Data

early stop

algorithm.

- Andrawas

The Exploratory Data Analysis helped us select the best features for this task. These features are 'theo tt', 'stla', 'stlo', 'stel', 'evla', 'evlo', 'evdp.' Then, we tested different machine learning models to predict waves travel times and our best machine learning algorithm is the Gradient Boosting with a mean squared error of 1.56 seconds. Machine learning Boosting builds an initial model to fit the data and follows that by building a second model while correcting the inaccuracies of the first model. By doing that multiple time, the combination of these models produce a stronger and better model.

The next best model is the Random Forest model with a mean squared error of 2.92 second. A Random Forest combines the output of multiple decision trees to output a single result. In the case of regression, it uses the average prediction of all the trees making it more accurate and thus usually does better than a single decision tree.

The third best model is the Neural Network with a mean squared error of 5.98 seconds. A Neural Network uses interconnected nodes that works like neurons. Using algorithms, these nodes can learn patterns, cluster, classify, and improve overtime.

In sum, our best models did better than the theoretical values which has a mean squared error of 10.90 seconds. Therefore, using machine learning methods is the better way to predict waves travel time.

