GLOBAL POWER GENERATION
@ Wind Solar Hydro @ Nuclear @ Gas Oil @ Coal Other’

Thousand TWh : According to McKinsey, by 2050,
| renewable energy will account for
73% of global power generation.
And copper has a key role to play
in this ongoing transition. 49

45
40

1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

Share of
renewables 18% 27% 51% 73%

1 Other includes biomass, geothermal, and marine
Source: McKinsey Energy Insights’ Global Energy Perspective, January 2019

Background/Purpose

Since copper is a great conductor of heat, renewable energies like
wind and solar farms will require huge amounts of the metal.
Subsequently, making copper a high demand commodity for
renewable energy in the future. Currently the best location to
collect copper from is porphyry deposits located near volcanoes.
However, not all porphyry deposits are fertile or filled with
valuable metals. In the paper "Application of machine learning to
characterizing magma fertility in porphyry Cu deposits,” S. Zou and
his team showed that through the analysis of zircon geochemistry,
machine learning models of Neural Network and gradient boosted
decision trees were able to generate highly accurate models to
separate fertile and infertile pophry copper locations.

As noted in the paper the most difficult part of creating these
models was the collection of the data samples. One of the most
basic rules of machine learning is that only "good" data will result in
a "good” output from the model. In the manner of zircon
geochemistry a "good" sample would be a sample that contains all of
the following 19 elements (La, Pr, Ti, Nd, Er, Tm, Y, Hf, Eu, Sm, &d,
Ce, Dy, Lu, Tb, Th, Ho, Yb, U) along with containing no outliers in any
of the elements mentions. This stringent set of requirements
scoured our 3000 sample sized dataset until only 1300 usable
samples were available. Zircon geochemistry is not an easy process,
so losing half of the sample size in each batch is a terrible
inefficiency, however it is better than the alternative, which is the
cost to mine in an infertile porphyry copper deposit.The paper
proves that using machine learning on zircon geochemistry samples
can accurately predict whether porphyry deposits are fertile with
copper (S. Zou). In our study we wanted to expand on this concept
by trying to alleviate one of the primary inefficiencies of the
previous model, the removal of zircon samples. Our research at-
tempts to see if we could preserve samples by using the SciPy
imputation library to find the missing values of the different
elements and to see the effect of such a change on the end
behavior on different machine learning models.

Models

Neural Networks

NN models are good at processing large datasets to find
relationships or patterns in the data. This was one of the models
used by the article to evaluate if the zircon sample was taken from
a porphyry deposit that was fertile with valuable metals. In general
Neural Networks typically do better with more samples provided
however this is only frue if "good’ samples or samples that
accurately contain the relationship between different samples are
provided. In the paper to preserve the integrity of the data the
authors removed the "bad” samples which contained outliers or was
missing element values. In our study we wanted to see if there was
a way to preserve the integrity of the data without throwing away
the samples. We predict that some of our imputations would
improve the accuracy and predictability of this model.

Logistic Regression
This model is considered the baseline model for classification
problems. Although it is sensitive to outliers, the size of a dataset
Is not a factor when trying to classify with Logistic regressions.
This makes it a perfect the model to judge how much noise or
meaningless data is added to the dataset when we impute values.

Predicting Magma Fertility for Porphyry Copper Exploration Using Machine Learning

By Precious Mungin, Nhi Hoang, Kamalesh Muthu and Johan John
UH Data Science for Energy Transition

Data Preprocessing: Dealing with Outliers on the Samples

Unaltered Ti Data

0 2000 4000 6000 8000

Ti Data after removing Outliers (Original Dataset)

0
12000 0 10

30 40 0

New Ti Data with our Alterations

10 20 30 40 50

As you can see 1n the unaltered Ti histogram, majority of the sample exist in the first bin (0-1000 ppm) with outliers existing in the rest of the
bins. These outliers can mess with the machine learning models so 1n the the paper (Zou, S.) the authors just removed the outliers from the
dataset, which in the case of Ti 1s any sample over 50 ppm. Since our team was trying to preserve samples instead of removing outliers

samples we just replaced the outlier value with the max value the sample can be which in this case 1s 50 ppm.

Data Preprocessing: Dealing with Missing Values in the Samples
Original Dataset Univariate Imputation (Median)

The dataset we were provided is full of empty values Our goal in this project was to preserve the samples collected
since not all of the 14 elements analyzed are present in istead of removing the undesired ones. To do this we need to
every zircon sample. Since the model looks at the ratios ~ impute or replace the missing values with data that preserves
between the elements to make decisions an element the integrity of the dataset. Since the missing values are all
without a value would lead the program to see a ration numeric we decided to use the scipy imputation function to find
of either a zero, a non-number or infinity. It is very the missing values. The first method we used was univariate
clear this is a problem we need to solve. In the paper imputation which takes in the known values of a particular
(Zou, S.) the authors solved this problem by removing feature to fill in the missing values of that feature. In this case
samples with missing values. This 1s a good solution we filled in the missing values with the median of the feature
since it preserves the original relationships between the since as vou can see in the Ti graph below the data is skewed to

samples without introducing noise into the sample. the left, so the median value is a better representation of the
average of the data than the mean value.

KNN Imputation
Neural Network
Loss-0.466, Accuracy-0.788
Logistic Model
Accuracy - 0.795

Training and Validation loss

—— Training loss
— validation loss

40 60
Epochs

Training and Validation Acc

—— Training accuracy
validation accuracy

New Ti Data with our Alterations

Results

Original
Neural Network
Loss-1.846, Accuracy-0.812
Logistic Model
Accuracy - 0.827

Training and Validation loss

— Training loss
— validation loss

40 60
Epochs

Training and Validation Acc

—— Training accuracy

validation accuracy
- -5 o

K-Nearest Neighbor

In the K-Nearest Neighbor (KNN) imputation the
method takes in all of the features of the dataset
except the missing feature and “plots” them and finds
the nearest “neighbors™ (in our case 2) and averages
there values and gives it to the missing values. This
type of imputation makes clusters very distinct and
easy to see for the machine, however this comes at a
cost of accuracy. We predict that this method would
gives us the least loss while also being one of the
more inaccurate methods.

Multivariate Imputation

Multivariate imputation solves the missing value problem in a similar manner to the KNN
imputation method. Like KNN the multivariate imputation takes in all of the features to
calculate the imputed value. The difference between the two is that the multivariate
imputation creates a function from the iput that will output the missing value. Of the three
imputation methods we tried the multivariate method would be the one that most closely
preserves the integrity of the original dataset and the most accurate. However it is also the
method that is the most prone to noise. The method assumes that there is a function that can
be generated from the data that explains the relationship between the values. While this
could be true real data is typically organized in clusters, leading to the actual value of the
imputation to be different that the one recorded by the multivariate imputation. Furthermore

this imputation might give values of zero into the dataset, which would mess up the models
since ratios where zero is the divisor equal infinity (x/0 = «0). In order to preserve the
models we had to remove the values from the dataset where the imputed value was zero.

Multivariate Imputation
Neural Network

Loss-1.426, Accuracy-0.854
Logistic Model
Accuracy - 0.773

Training and Validation loss

—— Training loss
—— validation loss

40 60
Epochs

Training and Validation Acc

—— Training accuracy

validation accuracy
o*e .' -

Univariate Imputation
Neural Network
Loss-0.466, Accuracy-0.788

Logistic Model
Accuracy - 0.751

Training and Validation loss

—— Training loss
— validation loss

40 60
Epochs

Training and Validation Acc

—— Training accuracy
* validation accuracy

Volcanic arc Porphyry deposit (5]

Continental
crust Upper crustal (4
magma reservoir ; Ocean'

erust

Qceanic mantle
dtﬂerenht‘m lithasphere

Underplating (1) i
Subcontinental I .
mantle lithosphere (2] (o
e %)
Partial melting—_ ﬁ-b”'ﬂ
of hydrated a,l:.;;'f‘ Asthenosphere
mantle o
wedge

Porphyry Deposits

Conclusion

In our study, we used three imputation techniques to compare the
techniques with how closely we could preserve the integrity of the original
dataset. We used KNN, univariate, and multivariate imputation to observe
the differences it creates among the end behavior of the models.
Univariate imputation implies that there is no relationship between the
missing values and the other features in the dataset. By choosing the
median to replace the missing values, it is able to preserve the distribution
of the data. Multivariate imputation is useful there is a relationship
between the missing values and the other features in the dataset. However,
it can be prone to noise when the relationship between the variables is
clustered. KNN imputation, like, multivariate imputation is useful when
missing values are not random. It predicts missing values based on the
values of the k-nearest data points in the dataset. This technique can
preserve relationships between clustered data points. Looking at the
Logistic Regression model we notice the most accurate model is the original
dataset. The next accurate logistic model is the KNN dataset. This tells us
that among the three imputations, KNN is the closest to the original
dataset implying that the relationship between fertile deposits and
infertile deposits are clusters. The most accurate model for the NN was
the multivariate model with the accuracy of 85 percent followed by the
other three methods which have an around 80 percent. However we can not
say the multivariate model is the best model since it has a high value for its
loss function. In general we found that imputation missing values decreases
the loss function in the NN model which can be seen in the fact that the
highest loss value is recorded by the original dataset which is the smallest.
The two functions with the lowest loss function was the univariate
imputation and the KNN imputation. Looking at the two models KNN seems
to be the best general imputation technique for this dataset since it closely
models the original dataset and has the least loss value. However it is clear
that there are better imputation alternatives since both the original
dataset and multivariate dataset outperformed the KNN imputation.
Therefore it is important to know what your models need before choosing
an imputation technique.

Acknowledgement

National Science Foundation (NSF I1S-2123247)

Data Science for Energy Transition

Dr. Jiajia Sun

Dr. Jonny Wu

Dr. Jeremy Tsung-jui Wu

Zou, S., Chen, X., Brzozowski, M. J., Leng, C.-B., & Xu, D. (2022). Applica-

tion of machine learning to characterizing magma fertility in porphyry Cu

deposits. Journal of Geophysical Research: Solid Earth, 127,

e2022JB024584. https://doi. org/10.1029/2022JB024584

“Copper: Critical Today, Tomorrow, and Forever." Visual Capitalist, 22 Oct.

?OZO, www.visualcapitalist.com/sp/copper-critical-today-tomorrow-and-
orever.

Link to

B Notebook

|
EI .1.|.'I'."":I.I"'= -

