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INTRODUCTION

n the age of large language models like ChatGPT and
_LaMa, data is king. Companies and researchers invest
arge amounts of human resources in collecting all the
data they can. However, before organizations can use
this valuable data, it must first be organized in a
structured way. Text classification allows organizations
to efficiently and cost-effectively organize any type of
text, such as e-mails, legal papers, databases, and other
documents. Al tools like BERT exist that can help in
automating this task. BERT stands for Bidirectional
Encoder Representations from Transformers and utilizes
transfer learning to perform language processing tasks.
We combined the web scraping library BeautifulSoup
and BERT for this project to create a binary classification

model. The data we used for this project was collected
from PetroWiki & AAPG Wiki.

METHODS

In the first step of our project, we had to ensure scraping
was allowed for each site by locating the root of the
website for each wiki site. Once we had confirmation of
the presence of a robots.txt file in each wiki site, we
chose to do a binary classification to categorize data into
one or more classes. This classification would be done
by scraping multiple sources from two different sites:
PetroWiki and AAPG wiki. We planned our scraping tool
by using the popular Python library BeautifulSoup, which
specializes in web scraping by making extracting data
from HTML and XML files easier. To implement the
scraper, we selected only the necessary body of
paragraph within the chosen link for each wiki site and
began to extract .txt files for our pre-build LLM model
Bert to analyze. The scraping process extracts the
contents we want from each link and removes any
unnecessary variables on each site. Once the scraping
process Is finished, we prep the dataset to structure it for
the correct format for training in BERT. In our case, we
took a page that should be a text file and labeled it either
O for Petro wiki or 1 for AAPG wiki. Once the dataset
was formatted correctly for BERT, we trained the model
to fine-tune it by adjusting the parameters as needed
based on the performance of the validation set. Then,
once we split the data into training and testing data, we
evaluate BERT's performance metrics.

RESULTS

# Loop through each file in the directory
for entry in os.scandir(directory_path):
if entry.is_file() and entry.name.endswith('.txt"'):
file_paths[entry.name.split('."')[0]] = entry.path
# Load and preprocess the data
texts, labels = [], []
for file_name, file_path in file_paths.items():
with open(file_path, 'r', encoding='utf-8') as file:

label = int(file.readline().strip().split(":")[1].strip()) # Assumes label is in the first Lline

text = file.read().strip()
texts.append(text)
labels.append(label)

data = Dataset.from_dict({"text": texts, "label": labels})

# Define the tokenizer
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased"')

# Tokenize the dataset
def tokenize_function(examples):

return tokenizer(examples['text'], truncation=True, padding="max_length", max_length=512)

encoded_data = data.map(tokenize_function, batched=True)

# Split the dataset into training and validation sets
train_test_split = encoded_data.train_test_split(test_size=0.1)
dataset = DatasetDict({

"train': train_test_split(['train'],

‘validation': train_test_split['test’']
1)
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With the accuracy score being 0.75 and the f1 score
being 0.8 for Petrowiki and 0.67 for AAPG, we can
say that our method performed relatively well in
classifying articles from Petrowiki and AAPG. The
decrease of epochs from 0.7527 to 0.6337 suggests
that the model is learning from the training data.

Training Loss Validation Loss Accuracy F1 Precision Recall
0.752700 0.678861 0.600000 0.750000 0.600000 1.000000
0.680175 0.400000 0.000000 0.000000 0.000000

0.665702 0.600000 0.500000 1.000000

This code is for grabbing the
data from our directory and then
setting up the tokenizer and
tokenizing our data set, then
splitting the data into training and
testing data.

The second image of code sets
up our model into finding the two
labels, 0 and 1. Then, we explain
our arguments for the training
session of the model, setup the
trainer itself, and train the model.

# Setup the model and trainer
model = AutoModelForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=2)

training_args = TrainingArguments(
output_dir="'./results’,
evaluation_strategy='epoch', # Evaluate at the end of each epoch
per_device_train_batch_size=2, # Adjust based on your GPU/CPU
num_train_epochs=3,
logging_dir='./logs’,
logging_strategy='epoch', # Log at the end of each epoch
save_strategy='epoch', # Save at the end of each epoch
load_best_model_at_end=True,
metric_for_best_model='f1l",

)

trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset|['train'],
eval_dataset=dataset|'validation'],
compute_metrics=compute_metrics

)

# Train the model
trainer.train()

# Evaluate the model
evaluation_results = trainer.evaluate()
print(evaluation_results)

The validation loss fluctuated but roughly the same
from 0.66 to 0.68 saying the model is not overfitting.
The high loss values suggesting the model's
accuracy is limited by the smaller dataset.

The high recall 1.00 and the low precision 0.6000
reveals that the model is correctly identifying the true
positives but at the cost of incorrectly labeling the
false positives.

DISCUSSION

Our research faced significant challenges related to the
constraints of time and resources. The limited timeframe
Imposed constraints on the extent to which we could expand
the scope of our project and explore alternative
methodologies. Consequently, we opted for a binary
classification approach. A substantial portion of our project
timeline was dedicated to data collection and preprocessing
tasks, particularly in preparing the dataset for training the
BERT model. The process of data scraping posed
challenges in terms of efficiency and scale. As a result, we
encountered limitations in the volume of data collected,
which consequently impacted the size of our sample for both
websites.
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